
Intermediate Fidelity Solid State Recorder Modeling for NISAR

Michael Trowbridge and Joshua R. Doubleday
Jet Propulsion Laboratory, California Institute of Technology
{michael.a.trowbridge,joshua.r.doubleday}@jpl.nasa.gov

Abstract

At 26Tb/day return average, NISAR (National Aero-
nautics and Space Administration (NASA) and the In-
dian Space Research Organization (ISRO) Synthetic
Aperture Radar) will stress ground station facilities
with a variable cadence of data generation observing
nearly all of earth’s land and ice to produce global time-
series maps of cryospheric, solid-Earth and ecosystem
phenomena. Between the instrument data generation
source and downlink sink lies the primary science data
buffer, the SSR (Solid State Recorder).

The SSR has deferred, discrete file deletion events that
occur only after a file is played back to all required
ground segments (sometimes both NASA and ISRO).
A forward dispatch, advancing frontier repropagation
playback scheduler is proposed as a model of the SSR’s
greedy playback scheduling behavior. Schedules based
on the existing low fidelity model and new intermediate
fidelity model are compared to assess the impact of
deferred, discrete deletion on planning. The low fidelity
model is found to produce unfeasible schedules that
exceed SSR capacity, causing 3.87% of all observations
in a 12 day simulation to be removed by repair actions.

Introduction
NISAR (National Aeronautics and Space Administra-
tion (NASA) and the Indian Space Research Organiza-
tion (ISRO) Synthetic Aperture Radar) is a joint India-
US science mission that observes solid Earth land mass,
ice masses and ecosystems from a 747 km low Earth or-
bit over a three year mission. NASA’s instrument (L-
band SAR) is a hosted payload on an ISRO bus, and
will sometimes be operated in tandem with ISRO’s S-
band SAR instrument. The nations will share science
data, but their ground segments are not federated. Sci-
ence data will sometimes be played back twice – once
to NASA and once to ISRO – before it is deleted.

The variable playback policy is a significant planning
complication. The two instruments record to a com-
mon data recorder, which plays back observations from

Copyright c© 2017, by the California Institute of Tech-
nology. ALL RIGHTS RESERVED. United States
Government Sponsorship acknowledged.

Contact author: Michael Trowbridge

different combinations of the two instruments to differ-
ent combinations of ISRO and NASA’s separate ground
segments. It is as much a store-and-forward routing
message queue as it is a data buffer (figure 1).

Figure 1: Solid State Recorder modeled as a message
queue

Downlink order is nominally by priority, then age,
with preemptions possible. We only use our full play-
back rate if we play two files simultaneously, but hard-
ware prevents us from playing S-band and L-band files
at the same time. We can play two L-band or two S-
band files at the same time, but this works against the
age sort. Simulation shows files lingering on the data
recorder as long as 34 hours (figure 2).

0 5 10 15 20 25 30 35
File age at playback end [hours]

0
1000
2000
3000
4000
5000
6000

N
um

be
r

of
fil

es

Max age: 34 hours

NASA
ISRO

Figure 2: File age at playback end over a 12 day,
preemption-free simulation.

Figure 3 shows recorder fill state when deferred dele-
tions occur. Note how the fill level (blue line) does not



drop after any of NASA’s playbacks, but does drop, one
file at a time, after each of the final (ISRO) playbacks
finish. The three abrupt, stair-step decreases between
400 and 600 seconds are the discrete file deletions.

0 100 200 300 400 500 600
Seconds into schedule

0.0

0.1

0.2

0.3

0.4

0.5

Te
ra

bi
ts

on
da

ta
re

co
rd

er

NASA

ISRO

NASA

ISRO

Figure 3: Deferred, discrete file deletions after play-
back to both ground segments. Vertical orange and red
bands are playbacks.

How significant are the effects of these delayed dele-
tions and deferred playbacks? If they can be ignored, we
can use a simpler, faster model of a continuous fill/drain
integral quantity (Knight and Hu 2009) and add margin
to our mission plan. If deferred playbacks and deletes
are significant, we may need to adjust our scheduling
approach. This paper explores that question by pass-
ing a schedule based on a fill/drain integral recorder to
a detailed file system model and playback scheduler to
identify storage capacity violations. We also describe a
forward dispatch playback/delete scheduling algorithm
used in this experiment.

Related Work
Cesta et al. defined the related Mars Express Mem-
ory Dumping Problem (MEX-MDP) as choosing a se-
quence of science data buffer playbacks and playback
durations such that science data is delivered as soon as
possible, subject to data priority (Cesta et al. 2002).
The solution space is the sequence of playbacks, where
the observational schedule is considered fixed. MEX-
MDP solutions include a greedy forward dispatch al-
gorithm, tabu search (Cesta et al. 2002) and an opti-
mal linear programming solution (Righini and Tresoldi
2010). MEX-MDP is similar to NISAR’s memory man-
agement problem in that science data is separated into
different banks, data priority is a constraint and play-
back preemption is possible (Cesta et al. 2002).

MEX-MDP and NISAR memory management differ
in several ways. MEX-MDP has one receiving ground
segment, where NISAR has two receiving ground seg-
ments and file-specific space-to-ground routing poli-
cies. In MEX-MDP, failure to play back data does
not prevent future observations because the spacecraft
(Mars Express) autonomously overwrites old data in
a FIFO, circular buffer manner (Cesta et al. 2002).

NISAR, on the other hand, will stop recording ob-
servations when recorder capacity is exceeded. The
unit of deletion is more granular in MEX-MDP, where
NISAR does not piece-wise delete a file; it defers dele-
tions to large, bulk-free events. Lastly, in MEX-
MDP, the observation schedule is fixed and the solu-
tion space is the playback sequence (Cesta et al. 2002;
Rabideau et al. 2016), where in NISAR the observation
schedule is the solution space and playback behavior
is fixed because the recorder/playback scheduler is an
existing, third-party hardware component.

The MEX-MDP formulation was also applied to the
Rosetta mission (Rabideau et al. 2016). The max-flow
implementation for the Rosetta version of MEX-MDP
added an aspect similar to NISAR - data reservations
and post-playback frees that are instantaneous, discrete
events (Rabideau et al. 2016). Like the original MEX-
MDP, Rosetta playback planning treated the observa-
tion schedule as fixed and the playback schedule as so-
lution space (Rabideau et al. 2016).

Piece-wise linear integrals with simultaneous
fill/drain have been used to model satellite data
recorders in ASPEN (Fukunaga et al. 1997;
Knight, Donnellan, and Green 2013) and CLASP
(Knight and Hu 2009). The Mars EXpress scheduling
ARchitecture (MEXAR) also modeled simultaneous
fill and playback events (Cesta et al. 2002).

The University of Surrey built and operated more
than one store-and-forward message routing satellite in
the 1980’s and 1990’s, noting that they were but one of
many such organizations (Ward 1990). These systems
had frequent contact with the ground and were primar-
ily designed for reliable message delivery, potentially
using more storage and with lower throughput. Our
goal for NISAR is different - empty the data recorder
as quickly as possible, because the science mission is
limited by data throughput (Doubleday 2016).

Joslin and Clements introduced Squeaky Wheel Op-
timization in 1999 (Joslin and Clements 1999), an algo-
rithm for fast schedule optimization in massively over-
subscribed systems based on greedy schedulers. Knight
et al. applied it to pushbroom sensor scheduling for
Earth observing satellites in the context of NISAR’s
predecessor, the DESDynI mission (Knight and Hu
2009; Knight, McLaren, and Hu 2012; Doubleday and
Knight 2014). Prior versions of CLASP treat each
spacecraft’s on-board storage as a piece-wise linear
fill/drain integral, where playing back to any ground
segment allows constant rate draining during the play-
back. Higher fidelity models were added to CLASP
during NISAR phase B preliminary design (Double-
day 2016), but these versions did not model end-to-end
playback scheduling with discrete deletion events.

Forward dispatch is an older approach that has been
used for job shop scheduling (Fox et al. 1983) and for
space systems by ASPEN (Fukunaga et al. 1997) and
MEX-MDP1 (Cesta et al. 2002). It is a greedy algo-

1The Greedy (One-pass) Heuristic Solver (Cesta et al.



rithm that moves forward in time from the planning
horizon start, choosing its next task based on a criteria
like value, utility or deadline (Chien 2009). Forward
dispatch is a constructive algorithm that only chooses
feasible options at each decision point, guaranteeing
that the final schedule is also feasible.

NISAR is similar to the Soil Moisture Active-Passive
(SMAP) mission. SMAP was designed to detect soil
moisture content from low Earth orbit using synthetic
aperture radar (SAR) and radio interferometry pay-
loads (Entekhabi et al. 2010). Its SAR instrument pay-
load, orbit and use of the NASA Near Earth Network
(Choi 2012) are similar to NISAR. They both normally
buffer their data to an internal data recorder before
transmission to the ground (Deems, Swan, and Weiss
2012). SMAP’s instrument look up table (LUT) is also
included in NISAR design.

NISAR and SMAP schedule observations and delete
files differently. SMAP always makes observations when
the spacecraft is over a region of interest (Deems, Swan,
and Weiss 2012), but NISAR must be more selective
to preserve storage space for later observations. The
two missions also delete data differently. SMAP re-
tains data until it receives a deletion command from
the ground and is capable of ground-directed replays
(Choi 2012). NISAR autonomously deletes files after
the final playback, with no confirmation of receipt by
the ground before file deletion. SMAP’s ground seg-
ment is more involved in file and playback management
than observation scheduling - the reverse of NISAR.

Formulation

Scale is the core challenge of planning for NISAR.
CLASP’s Squeaky Wheel Optimization implementation
is driven by failure to schedule observations. Observa-
tions can only fail to schedule if there is a conflicting
instrument/orientation reservation or insufficient on-
board memory to store the observation. As the search
space is combinatorial, fast execution of the scheduling
loop is required for meaningful optimization.

The scheduler cannot simply query the instantaneous
value of the data recorder. Suppose we plan an obser-
vation at t2 > t1 that consumes 95% of the spacecraft’s
on-board storage. If we later schedule a request at t1
that consumes 10% of the on-board storage, the prior
commitment for the t2 observation is broken, because
only 90% of the recorder space is available at execution
time. The schedule would be infeasible (figure 4).

CLASP uses a fast, linear integral model of the solid
state recorder for squeaky wheel optimization. We
apply the intermediate fidelity SSR model as a post-
processing step and repair the schedule by removing ob-
servations that fail to place on the intermediate fidelity
SSR model. We use this two-pass approach because the
intermediate fidelity model is sensitive to the start time
sequence of the observations scheduled and too slow for

2002)

100%

t1 t2

Commitment
broken

commitment
Original

New
reservation

Recorder capacity

Time

Figure 4: Considering only instantaneous state at t1
can invalidate a future commitment at t2.

individual scheduling operations during squeaky wheel
optimization (see Discussion).

AnalyzerPrioritizer

Constructor

Greedy Scheduler

Linear Integral SSR Model

Geometric Visibilities

Communications Access

Fill reservations

Sufficient Capacity

Drain reservations

Intermediate Fidelity SSR Model

SWO Scheduling
 
Post−processing

Blame

Priority Queue Schedule

Schedule

Repaired schedule

Figure 5: Squeaky wheel scheduler and two-pass SSR
model

SWO Scheduling: Linear Integral Model

CLASP addresses future commitments by making a
test reservation, propagating the changes to recorder fill
(evaluating the integral), checking for violations, then



undoing the test reservation. If the test reservation suc-
ceeds, we say that scheduling the t1 observation is fea-
sible. If t1 is feasible, CLASP commits the on-board
storage reservation. If the test reservation found t1 to
be infeasible, the higher level scheduler will attempt al-
ternate different times or move on to different science
targets.

This approach leads to significant on-board storage
timeline propagation. For speed, CLASP approximates
the downlinks as a piece-wise linear negative rate reser-
vations on the data recorder with a lower bound clamp
at 0 bits. At the beginning of each scheduling loop,
downlinks are scheduled over an empty data recorder.
The downlinks are not modified after they are placed at
the start of the planning loop. Positive rate reservations
for observations are later summed with any rate reserva-
tion that happened to be already present (downlink or
observation) and numerically integrated (forward Eu-
ler).

This model makes several assumptions. It is possible
to read and write a file at the exact same time, at the
exact same spot. There are no bandwidth limitations
into or out of the data recorder. We can read and write
to the recorder at single-bit intervals. Each file must
only be downlinked once before it is deleted and it
doesn’t matter which downlink window we use to play
the file back. Nonlinear, discrete effects of block size
and buffering are ignored, as the piece-wise linear inte-
gral is only an approximation of true system behavior.

Post-processing: Intermediate Fidelity
Model

Some of the linear integral model assumptions conflict
with the NISAR concept of operations. The greatest
discrepancy is that some files must be played back to
both NASA and ISRO ground segments separately be-
fore the file is deleted. Likewise, some observations will
only go to NASA or ISRO, and we must wait until the
spacecraft has a contact window with the appropriate
nation’s ground segment before the file can be played
back. Furthermore, no available hardware architectures
offer unlimited I/O throughput rates and discrete ef-
fects are large enough that we question the feasibility
of a schedule produced with a monolithic, piece-wise
linear data recorder model.

With the file system architecture above the model
moves from managing an abstract pool of accumulated
data to planning management of specific files. Knowing
when a file can be played back is in part determined
by knowing which parts of which observations were in
it. The rules for deciding this are based on temporal
adjacency in the timeline or explicit annotation by a
human planner. This creates a circular dependency:
file contents → schedule contents → recorder capacity
→ file contents.

We address the circular dependency by using the
monolithic recorder model’s schedule as a starting point
that may or may not be feasible. We simulate execu-
tion of the schedule, assembling files from observations

and playing back files when they are ready and the cor-
rect nation’s ground stations are in view (algorithm 1).
When an schedule observation cannot be added to a file
because it would exceed the data recorder’s capacity,
we treat that observation as infeasible and repair the
schedule by removing the infeasible observation from
the schedule.

Established Replanning Unplanned

t0 tp

Time

Figure 6: Replanning playbacks along an advancing for-
ward dispatch frontier

Algorithm 1 Forward dispatch playback scheduling

O ← sort(Observations, by time, ascending)
tr ← t0 . Failure rollback limit
failed, success← ∅
for all o ∈ O do

tp ← tf . Propagation start
r ← aggregateSize(o)
if reserve(r) then . Recorder reservation

journal← ∅
for all c ∈ o.channels do

f ← getFileOrOpenNew(o, c)
if tp > f.start then tp ← f.start
end if
f.append (o, c)
journal.append (f, o, c)

end for
rollbackTo(tp)
if propagateDownlinks(tp) then

success.append ()
tr ← tp . Update failure rollback limit

else
failed.append (o)
rollback(journal)
rollbackTo(tr)
propagateDownlinks(tr)

end if
else

failed.append (o)
end if

end for

We then replan the playbacks and deletes that were
rolled back, including the file containing the newly
added observation (algorithm 2). We stop propagat-
ing when either the planning horizon ends or the play-
back queues are empty for each nation’s ground seg-
ment. This incremental, advancing frontier roll-back
and repropagation frees up data recorder space for the
next observation that will be planned.



Algorithm 2 Propagating downlinks

function propagateDownlinks(tp)
for all g ∈ ground segments do

t← tp
W ← gatherDownlinks(g, tp)
repeat

W ←W .intersectWith(t,W .end)
f ← g.queue.front() . Next file
t← findNextStart(g, t, f,W )
finished, tend ← play(g, t, f,W )
if finished then

g.queue.pop()
if playedToAllRecipients(f) then

recorder.unreserve(f.size, tend)
end if

end if
until g.queue empty or W empty or t ≥ tf

end for
return recorder.hasNoViolations()

end function

Algorithmic Traits of the Intermediate
Fidelity Model

The theorems that follow assume that a playback sched-
ule can only be infeasible because:

• Communications path is oversubscribed

• Playback outside of communications access

• Data recorder is oversubscribed

Theorem 0.1 (Correctness). The final forward-
dispatch playback schedule produced by the intermediate
fidelity solid state recorder model is feasible.

Lemma 0.1.1. A forward-dispatch playback sub-
schedule produced by the intermediate fidelity solid state
recorder model is feasible.

Proof. Assume that the output schedule is unfeasible.
One or more of the following is true:

• Communications path oversubscribed

• Playback outside of communications access

• Data recorder is oversubscribed

As the algorithm is a forward dispatch algorithm, when
scheduling playback or delete activity j at tj ≥ tp,
we first check to see if the required resources (com-
munications path channels, communications access to
ground segment) are available. If they are not, we seek
forward in time until they are both available (tj :=
tavail, tavail ≥ tp). This contradicts the first two possi-
ble reasons for playback schedule infeasibility.

If the data recorder is oversubscribed, then
intermediate-fi model must have permitted a reser-
vation that either directly exceeded recorder capac-
ity or undid a delete operation that would have kept
the data recorder usage within data recorder capacity.
Both of these conditions are criteria under which the

intermediate-fi model will fail to place an observation,
which contradicts that algorithm definition.

Lemma 0.1.2. A playback schedule generated by for-
ward dispatch of feasible sub-schedules is feasible.

Proof. By lemma 0.1.1, sub-schedule i will be feasible,
as will sub-schedule i+1. As this algorithm is a forward
dispatch algorithm, tp,i+1 ≥ tp,i ≥ t0. By induction,
the final schedule, which is the combination of each lo-
cally modified sub-schedule from earliest to latest, will
also be feasible.

Theorem 0.2 (Boundedness). The forward dispatch
playback scheduling algorithm in the intermediate fi-
delity solid state recorder will terminate.

Lemma 0.2.1. A forward dispatch sub-schedule prop-
agation will terminate.

Proof. Assume the sub-schedule propagation does not
terminate. Each repropagation will terminate when one
of the following occurs:

• Time cursor t ≥ tp at or after horizon end tf
• Playback queues empty (SSR empty)

• Playback opportunities exhausted

Playback queues are depletable work lists and oppor-
tunities are depletable resources consumed by playback
scheduling. Trivially, these deplete when playbacks are
scheduled, but cannot grow within a single downlink
repropagation. As this is a forward dispatch algorithm,
replanning cursor t advances when insufficient resources
are available for the next playback and cannot move
backwards. By induction, time will either remain the
same or move forward until queues are not empty or
horizon end.

Lemma 0.2.2. A playback schedule produced by ad-
vancing frontier forward dispatch repropagation will ter-
minate.

Proof. Each input observation can cause at most one
repropagation. The number of observations is fixed at
schedule time, so at most 2n repropagations (a failure
followed by a rollback repropagation) will occur (in se-
ries). Applying lemma 0.2.1 by induction, the overall
algorithm terminates.

Theorem 0.3 (Complexity). Producing a forward dis-
patch playback schedule with the intermediate fidelity
SSR model algorithm has complexity O (n)

Proof. At most 2n repropagations are possible and each
of the n observations are processed in series (see proof
for lemma 0.2.2). The amount of repropagation work
for each repropagation is bounded by the number of
files in the playback queues at each repropagation time
tp, which is bounded by the capacity of the solid state
recorder, which is fixed at run-time.



0 2 4 6 8 10 12
Days into schedule

0

2

4

6

8
Te

ra
bi

ts
on

da
ta

re
co

rd
er

Figure 7: Data recorder fill over a 12 day simulation.

Experiment

To determine the impact of a deferred deletion policy
with multiple playback destinations is, we will gen-
erate an observation schedule using the low-fidelity
data recorder model. This schedule will be constraint-
compliant, but based on simplifications described in the
Formulation section. We will post-process the sched-
ule using the intermediate-fidelity model and remove
any observation that fails to place on the intermediate-
fidelity SSR model.

If the effects are insignificant, all observations will
successfully place on the intermediate-fidelity model.
Significance of deferred deletion effects will be expressed
as a percentage of the initial schedule’s observations
that are removed by intermediate-fidelity model repair
actions.

Results

Of the 3902 observations in the initial schedule, 151
(3.87%) failed to place on the intermediate fidelity SSR
model. While this is a small percentage, the intermedi-
ate fidelity model’s repair action does not respect pri-
ority, so some of the removed requests could be urgent
science requests. Figure 7 shows that extended periods
near maximum recorder capacity (dashed red line) start
every two days, sometimes for a whole day at a time. It
is common enough that normal operating and schedul-
ing policies should address the effects of deferred file
deletions.

Discussion

When to use the intermediate-fi model

The forward dispatch planning approach is key to the
boundedness and complexity theorems. If the planning
cursor does not move semidefinitely forward in time,
the worst case run time is O

(
n2

)
for reverse-dispatch

(planning backwards from horizon end). In Squeaky
Wheel Optimization, the planning cursor tp moves in
first-fit, scheduler priority order, where tp,i < tp,i−1 is
possible. Applying the intermediate fidelity model this

way invalidates the linear complexity proof in theorem
0.3.

If this model were used inside a squeaky wheel
scheduling loop and only one insertion point was tested
for each observation, we expect overall complexity be-
tween Ω (n) and O

(
n2

)
. If multiple insertion points are

tested for each observation within one squeaky wheel it-
eration, overall complexity could be O

(
n4

)
by analogy

to the rod cutting problem. As n will be large and n2

is expected to be intolerable, we recommend applying
the intermediate fidelity model no more than once per
squeaky wheel iteration, as a forward-dispatch schedule
repair in the Analyze phase (figure 8).

Constructor

Greedy Scheduler

Linear Integral SSR Model

Geometric Visibilities

Communications Access

Fill reservations

Sufficient Capacity

Drain reservations

Analyzer

Intermediate Fidelity SSR Model

Schedule Repair

Satisfaction scoring

Schedule

Prioritizer

Priority Queue

Blame

Figure 8: Recommended use of the intermediate fidelity
SSR model for Squeaky Wheel Optimization



Preventing the need for repair actions

The intermediate fidelity solid state recorder model de-
scribed in this paper has only one repair action: re-
move the most recently placed observation when re-
planning the playback schedule after that observation
results in an over-capacity data recorder constraint vi-
olation. This ignores the priority considerations of
Squeaky Wheel Optimization. Worse, it partially de-
prives Squeaky Wheel Optimization of its only feedback
mechanism - failure to schedule.

A more appropriate repair would be to sort the re-
quests that have already been placed by priority or-
der (least important to most important), then remove
placed requests until the schedule is feasible again. This
still has problems because it is locally scoped and may
undo squeaky wheel’s global optimization. Allowing the
flight system to execute this infeasible schedule is also
not advised, as this also undoes squeaky wheel’s global
optimization and causes unintended science data loss
during fault-free, routine operations.

The best outcome would be to never need a sched-
ule repair. One option is to add a configuration space
to the low fidelity SSR model’s maximum capacity, but
apply no margin to the intermediate fidelity model’s
capacity. Choosing the amount of margin to subtract
from the low fidelity model’s capacity may be difficult,
as failure to place on the intermediate model is a dis-
crete phenomenon that we expect to be driven by vari-
able file sizes and the exact circumstances of the com-
munications access windows. One option would be to
automate an empirical search for the smallest possible
margin that results in 100% success rate on the inter-
mediate fidelity model.

Recommendations for Future Work

Alternative repair actions that provide feedback to the
squeaky wheel optimizer should be considered. Other
repair strategies that respect priority should also be in-
vestigated. Lastly, empirical search for a configuration
space margin to apply to the low fidelity model such
that its output schedules have a 100% success rate on
in intermediate fidelity SSR model should also be ex-
plored.

One of this paper’s anonymous reviewers recom-
mended replacing the internal storage linear integral
model with an instantaneous reservation, instantaneous
free system. The start of the reservation would be the
start of data recording and the end of the reservation
would be the latest possible playback end time, assum-
ing that the data recorder is exactly full after finish-
ing the recording in question. The model would make
pessimistic reservations based on the worst case age of
the file when it is deleted, assuming no preemption.
There was insufficient time to prototype this idea, but
it sounds promising. Future work should examine this
more closely.

Conclusions

An algorithm to model the nonlinear, discrete effects of
deferred file deletions for multiple ground segment play-
back routing was presented as a linear complexity for-
ward dispatch scheduler. Neglecting deferred, discrete
deletion effects found to produce an infeasible observa-
tion schedule (exceeding recorder capacity) in a com-
puter simulation experiment. Repairing this infeasible
schedule resulted in the loss of 3.87% of the observa-
tions, possibly conflicting with the goals of the higher
level squeaky wheel optimizer. The simulation suggests
that over-capacity conditions may occur as frequently
as every other day if deferred deletion effects are ig-
nored.

Future work should focus on improving communica-
tion between the intermediate fidelity model and the
higher level scheduler, better repair action selection
and margining the low fidelity SSR model so that it
is far enough away from the recorder’s true capacity
that deferred deletion effects do not cause the recorder
to exceed its capacity. Pessimistic reservations based
on worst case file age at deletion time should also be
examined.

Acknowledgements

The research was carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Admin-
istration.

The authors would like to thank our our reviewers
for their constructive feedback. It helped improve our
paper immensely.

References

Cesta, A.; Cortellessa, G.; Oddi, A.; and Policella, N.
2002. Mexar: An intelligent support for space mission
planning. In Proceedings of the Workshop on AI Plan-
ning and Scheduling for Autonomy in Space Applica-
tions, Manchester.

Chien, S. 2009. Practical planning & scheduling. In
International Conference on Automated Planning and
Scheduling (ICAPS).

Choi, J. 2012. Cost-effective telemetry and command
ground systems automation strategy for the soil mois-
ture active passive (smap) mission. In SpaceOps 2012.
1275978.

Deems, E.; Swan, C.; and Weiss, B. 2012. End-to-end
data flow on the soil moisture active passive (smap)
mission. In 2012 IEEE Aerospace Conference, 1–16.

Doubleday, J., and Knight, R. 2014. Science mission
planning for NISAR (formerly DESDynI) with CLASP.
In SpaceOps 2014 Conference, 1757.

Doubleday, J. R. 2016. Three petabytes or bust:
planning science observations for nisar. In SPIE Asia-
Pacific Remote Sensing, 988105–988105. International
Society for Optics and Photonics.



Entekhabi, D.; Njoku, E. G.; O’Neill, P. E.; Kellogg,
K. H.; Crow, W. T.; Edelstein, W. N.; Entin, J. K.;
Goodman, S. D.; Jackson, T. J.; Johnson, J.; et al.
2010. The soil moisture active passive (smap) mission.
Proceedings of the IEEE 98(5):704–716.

Fox, M. S.; Allen, B. P.; Smith, S. F.; and Strohm,
G. A. 1983. Isis: A constraint-directed reasoning ap-
proach to job shop scheduling. Technical report, DTIC
Document.

Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D.
1997. Aspen: A framework for automated planning
and scheduling of spacecraft control and operations.
In Proc. International Symposium on AI, Robotics and
Automation in Space.

Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel
optimization. Journal of Artificial Intelligence Research
10:353–373.

Knight, R., and Hu, S. 2009. Compressed large-
scale activity scheduling and planning (CLASP) ap-
plied to DESDynI. In Proceedings of the Sixth Interna-
tional Workshop in Planning and Scheduling for Space,
Pasadena, CA.

Knight, R.; Donnellan, A.; and Green, J. J. 2013. Mis-
sion design evaluation using automated planning for
high resolution imaging of dynamic surface processes
from the ISS. In International Workshop on Planning
and Scheduling for Space (IWPSS 2013).

Knight, R.; McLaren, D.; and Hu, S. 2012. Plan-
ning coverage campaigns for mission design and analy-
sis: CLASP for the proposed DESDynI mission.

Rabideau, G.; Chien, S.; Nespoli, F.; and Costa, M.
2016. Managing spacecraft memory buffers with over-
lapping store and dump operations. In Bernardini, S.;
Chien, S.; Sohrabi, S.; and Parkinson, S., eds., Proceed-
ings of the 10th Scheduling And Planning Appications
woRKshop (SPARK), 69–75. London, UK: Association
for the Advancement of Artificial Intelligence.

Righini, G., and Tresoldi, E. 2010. A mathemati-
cal programming solution to the mars express mem-
ory dumping problem. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Re-
views) 40(3):268–277.

Ward, J. 1990. Store-and-forward message relay us-
ing microsatellites: The uosat-3 pacsat communications
payload.


